

Erik Langereis

Department of Applied Physics e.langereis@tue.nl http://www.phys.tue.nl/pmp

Ellipsometry Workshop Enschede, 11th February 2010

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Outline	1 / 38
 Atomic layer deposition (ALD) Basics of ALD Materials deposited by ALD Applications for ALD 	
In situ spectroscopic ellipsometry as tool	to monitor ALD
Monitoring the film thickness - ALD growth & growth per cycle - Self-limiting chemistry - Initial film growth & substrate dependence - Nanolaminates	Thin film materials: Al ₂ O ₃ Ta ₂ O ₅ Er ₂ O ₃ TiO ₂
Parametrizing the dielectric function - Metallic films: Electrical properties & electron scattering - Ultrahigh-k dielectrics Film composition & microstructure	TiN [°] TaN Ta₃N₅ SrTiO₃ Pt Ru

								, -								1	1 / 38
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Н																	He
Li	Be											В о,n,*	C	N	0	F	Ne
Na	Mg _{O,Te}											AI 0,N,*	Si _{0,N,} .	Р о [.]	S	СІ	Ar
К	Ca _{0,5,*}	Sc °	Ti 0,N,*	V	Cr o,•	Mn o,s,te	Fe °	Co °	Ni	Cu o,s	Zn _{O,S,Te,Se}	Ga o,n,*	Ge	As	Se	Br	Kr
Rb	Sr _{o,s,*}	Y o,s	Zr _{0,N,*}	Nb _{0,N}	Mo ∾	Тс	Ru °	Rh	Pd	Ag	Cd S,Se,Te	In o,n,s,*	Sn °	Sb °	Те	I	Хе
Cs	Ba	La* _{0,5,*}	Hf o,n,*	Та _{0,N}	W 0,N,S,*	Re	Os	lr	Pt	Au	Hg	TI	Pb s	Bi	Po	At	Rn
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
L	antha	noids*		Ce	Pr °	Nd	Pm	Sm °	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu °
Actinoids**			Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

(Outline	15/38
•	Atomic layer deposition (ALD) - Basics of ALD - Materials deposited by ALD - Applications for ALD	
•	In situ spectroscopic ellipsometry as tool to	monitor ALD
	Monitoring the film thickness - ALD growth & growth per cycle - Self-limiting chemistry - Initial film growth & substrate dependence - Nanolaminates	Thin film materials: Al_2O_3 Ta_2O_5 Er_2O_3 TiO_2
	Parametrizing the dielectric function - Metallic films: Electrical properties & electron scattering - Ultrahigh <i>k</i> dielectrics Film composition & microstructure	TiN TaN Ta₃N₅ SrTiO₃ Pt Ru
Departme	ent of Applied Physics – Erik Langereis	TU/e Technische Universitei Endhoven University of Technolog

ALD materials investigated → Metal oxides – Metal nitrides - Metals											
Material	Precursor gas	Reducing/ Oxidizing agent	Cycle time (s)	Temperature (ºC)							
Al ₂ O ₃	AI(CH ₃) ₃	H ₂ O/O ₂ plasma	4	100 (25–300)							
HfO ₂	$Hf[N(CH_3)(C_2H_5)]_4$	O_2 plasma	11	290 (230–350)							
Er ₂ O ₃	Er(thd) ₃	O ₂ plasma	50	300 (150–300)							
TiO ₂	Ti[OCH(CH ₃) ₂] ₄	O ₂ plasma	20	300 (25–300)							
Ta ₂ O ₅	Ta[N(CH ₃) ₂] ₅	O ₂ plasma	15	225 (100–225)							
SrTiO ₃	Star-Ti and Hyper-Sr	O ₂ plasma	>60	250 (150-350)							
TiN	TiCl ₄	H_2 - N_2 (10:1) plasma	40	400 (100–400)							
TaN _{x,x≤1}	$Ta[N(CH_3)_2]_5$	H ₂ plasma	37	225 (150–250)							
Ta_3N_5	$Ta[N(CH_3)_2]_5$	NH ₃ plasma	37	225 (150–250)							
Pt	(CpCH ₃)Pt(CH ₃) ₃	O ₂ /O ₂ plasma	17	300 (100-300)							
Ru	CpRu(CO) ₂ C ₂ H ₅	O_2/O_2 plasma	8	400 (300-400)							
Department of Applied F	Department of Applied Physics – Erik Langereis TU/e Technische University										

parametrizations employed are the Cauchy model [Al ₂ O ₃], the Taue-Lorentz oscillator model [HiO ₂ , Er ₂ O ₃ , Ta ₂ O ₅ , TiO ₂ (two oscillators) and Ta ₃ N ₅ (three oscillators) and the Drude-Lorentz oscillator model [TiN and TaN _{x,x < 1}]. The refractive index at 1.96 eV and the Taue optical band gap are also given.										
SE model parameters					Optical properties					
	Cauchy model Thickness (nm)	χ^2	An		B_n (μ m ²)		C_n (μ m ⁴)		Refractive index	Band gap (eV)
Al_2O_3	109 ± 3	9	1.62 ± 0.02		$(2.6 \pm 0.6) >$	10-3	(2.0 ± 0.2)	$\times 10^{-6}$	1.63 ± 0.02	a
	Tauc-Lorentz r Thickness (nm)	nodel χ²	$\begin{array}{c} A_j \\ (eV) \end{array}$	E_{0j} (eV)	Γ_j (eV)	E_{gj} (eV)	ε_∞	A_p (eV ²)	Refractive index	Bandgap (eV)
HfO ₂ Er ₂ O ₃ Ta ₂ O ₅	11.6 ± 0.4 7.1 ± 0.3 56.4 ± 0.8	7 6 12	108 ± 9 19 ± 2 320 ± 9	7.2 ± 0.1 7.7 ± 0.2 5.0 ± 0.2	1.6 ± 0.2 4.1 ± 0.3 1.7 ± 0.2	4.9 ± 0.1 4.0 ± 0.1 4.2 ± 0.1	2.5 ± 0.2 1 2.4 ± 0.2	205 ± 10	2.00 ± 0.02 1.78 ± 0.02 2.23 ± 0.02	5.8 ± 0.1 4.8 ± 0.2 4.3 ± 0.2
Ti_2O_2	33.2 ± 0.6	6	150 ± 8 197 ± 8	4.2 ± 0.1 5.5 ± 0.3	1.5 ± 0.1 11 ± 500	3.1 ± 0.1 3.4 ± 0.1	0.3 ± 0.1		2.42 ± 0.02	3.3 ± 0.1
Ta ₃ N ₅	48.5 ± 0.7	8	27 ± 1 265 ± 30 288 ± 20	3.4 ± 0.1 3.7 ± 0.2 4.7 ± 0.1	1.2 ± 0.1 1.7 ± 0.1 3.1 ± 0.09	2.1 ± 0.2 3.3 ± 0.2 5 ± 1000	1.6 ± 0.3		2.68 ± 0.02	2.5 ± 0.1
	Drude-Lorent; Thickness (nm)	x ² χ ²	el ħω _{pu} (eV)	$\hbar \Gamma_D$ (eV)	$f_{\rm i}$	ħω _{0i} (eV)	$\frac{\hbar \gamma_i}{(eV)}$	ε_{∞}	Refractive index	
TiN	11.7 ± 0.5	17	7.2 ± 0.1	0.86 ± 0.07	0.8 ± 0.2 3.5 ± 0.3	3.8 ± 0.1 5.6 ± 0.1	1.6 ± 0.1 2.3 ± 0.3	3.0 ± 0.1	1.3 ± 0.02	
$\text{TaN}_{x,x\leqslant 1}$	33.2 ± 0.5	26	5.5 ^b	3.4 ± 0.1	6.8 ± 0.2 3.5 ± 0.1	2.0 ± 0.1 6.8 ± 0.2	2.5 ± 0.1 4.6 ± 0.2	2.2 ± 0.2	2.70 ± 0.02	
^a Exceedir ^b Fixed pa	ng the photon end rameter in Drudd	ergy ra -Lord	ange (0.75–6 entz model. Langere	5 eV) of the e	Ilipsometers us	sed.	opl. Phys	5. 42. 07	3001 (20)09)

(Dutline	21/38
•	Atomic layer deposition (ALD) - Basics of ALD - Materials deposited by ALD - Applications for ALD	
•	In situ spectroscopic ellipsometry as tool to	monitor ALD
	Monitoring the film thickness - ALD growth & growth per cycle - Self-limiting chemistry - Initial film growth & substrate dependence - Nanolaminates	$\begin{tabular}{ c c c c } \hline Thin film materials: & Al_2O_3 & \\ & Ta_2O_5 & \\ & Er_2O_3 & \\ & TiO_2 & \\ \hline \end{tabular}$
	Parametrizing the dielectric function - Metallic films: Electrical properties & electron scattering - Ultrahigh k dielectrics Film composition & microstructure	TiN TaN Ta₃N₅ SrTiO₃ Pt Ru
Departme	Film composition & microstructure	TU/e Technische University of Fic

Outline	27 / 38
 Atomic layer deposition (ALD) Basics of ALD Materials deposited by ALD Applications for ALD 	
In situ spectroscopic ellipsometry as tool to	monitor ALD
Monitoring the film thickness - ALD growth & growth per cycle - Self-limiting chemistry - Initial film growth & substrate dependence - Nanolaminates	Thin film materials: Al ₂ O ₃ Ta ₂ O ₅ Er ₂ O ₃ TiO ₂
Parametrizing the dielectric function - Metallic films: Electrical properties & electron scattering - Ultrahigh <i>k</i> dielectrics Film composition & microstructure	TiN TaN Ta₃N₅ SrTiO₃ Pt Ru
Department of Applied Physics – Erik Langereis	TU/e Technische Universite Eindhoven University of Technolo

/ Department of Applied Physics - Erik Langereis

28 / 38

Crystalline films yield ultrahigh k values
 Post-deposition anneal required for crystallization

/ Department of Applied Physics - Erik Langereis

